Chapter 2: Polynomial, Power, and Rational Functions 2.4: Real Zeros of Polynomial Functions

	olynomial fun ree and zeros.	ction with leadi	ng coefficient	t 4 that has the
B) Degre	e 3 with 5, 1/3	, and 2/3 as zero	DS	
Using only table of va		thods, find the	cubic functior	with the given
X	-4	0	3	5
f(x)	0	180	0	0

Use the Rational Zeros Theorem to write a list of all potential rational zeros and then determine which ones, if any, are zeros.

$$f(x) = 3x^3 + 4x^2 - 5x - 2$$
Use the Rational Zeros Theorem to write a list of all potential rational zeros and then determine which ones, if any, are zeros.

$$f(x) = x^3 - 3x^2 + 1$$

Finding Rational Zeros	Find all of the real zeros of the function, finding exact values whenever
1) List all possible rational zeros p/q where	possible. Identify each zero as rational or irrational.
q is the leading	52. $f(x) = x^3 - 6x^2 + 7x + 4$
coefficient and p is the	52. 1(A) = A + 0A + 7A + 1
constant	
2) Use your calculator	
to find the zeros and	
then use synthetic division and algebra to	
prove that the zeros that	
you chose are rational	
zeros	
	Find all of the real zeros of the function, finding exact values whenever
	possible. Identify each zero as rational or irrational.
	$f(x) = 2x^4 - 7x^3 - 8x^2 + 14x + 8$

f(x) =
$$2x^4 - 7x^3 - 2x^2 - 7x - 4$$

A) Prove that all of the real zeros of f(x) = $2x^4 - 7x^3 - 8x^2 + 14x + 8$
must lie in the interval [-2, 5]

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy Chapter 2: Polynomial, Power, and Rational Functions 2.5: Complex Zeros and the Fundamental Theorem of Algebra

White a nation of minimum terms in standard from '41
Write a polynomial function of minimum degree in standard form with real coefficients whose zeros include those listed.
a) 2, 5i, and -6i
b) -2, 3, and $2 - i$
<i>b)</i> 2, 5, and 2 1
c) -4, 2 + 3i

Write a polynomial function of minimum degree in standard form with real coefficients whose zeros and their multiplicities include those listed. Then sketch a graph and discuss what you notice.
a) 3 (multiplicity 2), - 4 (multiplicity 3)
b) 3 (multiplicity 3), - 4 (multiplicity 1)
c) 5 (multiplicity 2), $2 + i$ (multiplicity 1)

Find all of the zeros and write a linear factorization of the function
28)
$$f(x) = x^3 - 10x^2 + 44x - 69$$

A) $f(x) = x^5 - 3x^4 - 5x^3 + 5x^2 - 6x + 8$

Using the given zero find all of the zeros and write a linear factorization
33)
$$f(x) = x^4 - 2x^3 - x^2 + 6x - 6$$
 zero: $1 + i$
Write the function as a product of linear and irreducible quadratic factors
all with real coefficients.
42) $f(x) = x^4 - 2x^3 + x^2 - 8x - 12$